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Abstract—Visual object tracking works as a critical component
for many instrumentation and measurement applications such as
UAV systems, optical tracking and measuring systems. Recently,
the tracking community leads a fashion of end-to-end feature
representation learning for visual tracking. Previous works treat
all feature channels and training samples equally during train-
ing. This ignores channel interdependencies and foreground-
background data imbalance, thus limiting the tracking perfor-
mance. To tackle these problems, we introduce channel attention
and focal loss into the network design to enhance feature rep-
resentation learning. Specifically, a Squeeze-and-Excitation (SE)
block is coupled to each convolutional layer to generate channel
attention. Channel attention reflects the channel-wise importance
of each feature channel and is used for feature weighting in online
tracking. To alleviate the foreground-background data imbalance,
we propose a focal logistic loss by adding a modulating factor to
the logistic loss, with two tunable focusing parameters. The focal
logistic loss down-weights the loss assigned to easy examples in
the background area. Both the SE block and focal logistic loss are
computationally lightweight and impose only a slight increase in
model complexity. Extensive experiments are performed on three
challenging tracking benchmarks (OTB100, UAV123, TC128).
Experimental results demonstrate that the enhanced tracker
achieves significant performance improvement while running at
a real-time frame-rate.

Index Terms—visual tracking, channel attention, focal logistic
los.

I. INTRODUCTION

V ISUAL object tracking works as a key component
for many instrumentation and measurement applications

such as UAV systems, optical tracking and measuring systems,
and et al. [1], [2], [3]. The task of visual tracking aims at
estimating the spatial trajectory of a specified target given
its initial state in a video sequence. An ideal tracker can
adapt to target appearance variations and achieve invariance to
occlusion, deformation, illumination changes and background
clutters under complex scenarios. Despite significant process
in recent years, persistent visual tracking is still challenging
due to the stability-plasticity dilemma.

Driven by the great success of Convolutional Neural Net-
works (CNNs) in computer vision, many state-of-the-art track-
ers [4], [5] substitute handcrafted features with deep convo-
lutional features and achieve superior tracking performance
on multiple tracking benchmarks [6], [7]. However, these
convolutional features are generally trained for a classification
task. To fully use the potential of CNN for the tracking task,
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Fig. 1: Visualization of the convolutional features extracted
from the first convolutional layer of AdaCFNet. Activations
are shown for two sample patches (left), taken from the
Basketball (top row) and Bolt (bottom row) sequence respec-
tively.These convolutional features have different activations
on the target object.

recent works learn feature representation for visual tracking
in an end-to-end manner. Bertinetto et al. [8] proposed a
fully convolutional Siamese network (SiamFC) to estimate the
feature similarity between an exemplar-candidate pair. Later,
Valmadre et al. [9] reformulated the closed-form correlation
filter as a differentiable layer in a lightweight convolutional
neural network (CFNet) and learned deep features tightly
coupled to correlation filter tracking. Both SiamFC and CFNet
are trained on a large video dataset specialized for video object
detection, namely ImageNet-VID [10]. These videos capture
all possible appearance variations of target object and thus
the learned deep features can effectively encode appearance
invariance to some extent. This is the main reason why deep
features learned in an end-to-end manner are superior to
handcrafted features.

Despite the strong power of CNN in feature represen-
tation learning, two major limitations have to be addressed
for further performance improvement. First, previous works
treat all feature channels equally and ignore the channel
interdependencies in network design. However, as shown in
Fig. 1, different feature channels capture different target infor-
mation and contribute discriminatively to target representation.
Therefore, the network architecture can be further improved
to reflect the importance of each channel and boost the
tracking performance. Second, discriminative trackers process
massive candidate object locations densely sampled across the
large search area, resulting in a mass of easy background
examples and only a few foreground examples containing the
object (as shown in Fig. 2). In this way, classifier training is
inefficient as most locations are easy background negatives that
contribute little useful training information. Meanwhile, the
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Fig. 2: Foreground-background data imbalance. Blue rect-
angles represent easy background examples, red rectangles
represent foreground examples and hard background examples.
Best viewed in color.

easy negatives can overwhelm filter training and lead to degen-
erate models. Previous works introduce channel reliability to
weight feature channels [11] and hard negative mining [12] to
tackle foreground-background data imbalance. However, these
approaches are intuitively designed and hardly benefit from
end-to-end training.

In this paper, we introduce channel attention and focal
loss into the network architecture to tackle channel weighting
and the foreground-background data imbalance in an end-to-
end manner. To perform feature weighting, a Squeeze-and-
Excitation (SE) block [13] is coupled to each convolutional
layer to generate channel attention. Channel attention reflects
the channel-wise importance of each feature channel and is
used for feature weighting in online tracking. To alleviate the
foreground-background data imbalance, we propose a focal
logistic loss by adding a modulating factor to the logistic
loss, with two tunable focusing parameters. The focal logistic
loss down-weights the loss assigned to easy examples in the
background area. The SE blocks and focal logistic loss can
automatically down-weight the contribution of less discrimi-
native channels and easy background examples to the training
loss respectively.

The main contributions of this work are three-fold. First,
we introduce channel attention and focal loss into an end-to-
end framework to tackle feature weighting and foreground-
background data imbalance. This framework is computation-
ally lightweight and can be combined with many deep trackers
with minor modification. Second, based on this framework, we
select a correlation filter based deep tracker (CFNet [9]) as
the baseline tracker and propose an improved tracker called
AdaCFNet, named for its self-adaptive weighting of feature
channels and training samples. Finally, extensive experiments
have been conducted on three popular tracking benchmarks,
including OTB100 [7], UAV123 [14] and TC128 [15]. Ex-
perimental results demonstrate that our approach achieves a
remarkable performance improvement while running with a
real-time frame-rate of 66 fps.

The remaining part of this paper is organized as follows.
Section II gives an overview of the most relevant work.
Section III provides a detailed description about our approach.
Section IV shows the experimental results on different tracking

benchmarks. Finally, the conclusion of this paper is provided
in section V.

II. RELATED WORKS

In this section, we provide a brief overview of the most
relevant works. In particular, deep feature based tracking, end-
to-end learning based trackers, channel attention mechanisms
and foreground-background data imbalance are discussed. The
readers are referred to [16] for more details on visual tracking.

A. Deep feature based trackers

Driven by the great success of Convolutional Neural Net-
works (CNN) in computer vision, deep features have been
widely employed in visual tracking due to the superior rep-
resentation power. A popular trend is the combination of the
DCF framework and convolutional features. DeepSRDCF [4]
is proposed to substitute hand-crafted features with shallow
CNN features in a spatially regularized DCF framework and
achieves superior tracking performance. CNN features are
extracted from multiple convolutional layers to encode both
spatial details and high-level semantics in HCF [17]. The
implicit interpolation method is exploited in CCOT [18] to
solve the learning problem in the continuous space. Despite
significant performance improvement, all the aforementioned
methods extract CNN features from a pre-trained object
classification network such as VGG [19]. Therefore, feature
extraction is separated from filter training in these methods
and the tracking results may be suboptimal.

B. End-to-end deep trackers

To benefit from end-to-end learning, researchers design
network architectures specialized for the tracking task. These
network models are trained offline on large video datasets
[10] and evaluated on tracking benchmarks [6], [7] for online
tracking. The pioneering deep tracker, MDNet [20], trains a
small-scale network by multi-domain learning and separates
domain independent information from domain-specific lay-
ers. Siamfc [8] poses tracking as a matching problem and
learns a similarity metric with a Siamese architecture on the
ILSVRC Imagenet Video dataset [10]. CFNet [9] interprets
the correlation filter as a differential layer in a Siamese
tracking framework and learns convolutional features coupled
to DCF learning. Both Siamfc and CFNet achieve end-to-
end feature representation learning and run at high frame-
rates. The main drawback is their unsatisfying performance
on tracking benchmarks. We argue that the aforementioned
deep trackers can be further enhanced with better network
architectures and loss functions to improve feature learning
and tracking performance.

C. Channel attention mechanisms

Channel attention reflects the channel-wise quality of the
multi-dimensional feature and is used for feature weighting
in visual tracking. Some feature channels capture little in-
formation of the target appearance and hardly contribute to
target localization. Therefore, these feature channels should be
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assigned lower channel reliability. Based on this assumption,
CSRDCF [11] estimates the channel reliability based on the
ratio between the second and first highest non-adjacent peaks
in the channel response map. ECO [21] jointly learns the
correlation filter and a projection matrix with a factorized
convolution operator. This projection matrix assigns small
values to channels with negligible energy and learns a compact
set of feature channels with significant energy. Although these
channel weighting approaches work well, they are intuitively
designed and can hardly benefit from the end-to-end training.
Recently, the Squeeze-and-Excitation network (SENet) won
the first place in the ILSVRC 2017 classification competition.
SENet adaptively recalibrates channel-wise feature responses
by explicitly modelling interdependencies between channels.
Inspired by SENet, we propose to learn channel attention for
the tracking task in an end-to-end deep network.

D. Foreground-background data imbalance

In visual tracking, the majority of negative examples are
typically trivial or redundant while only a few distracting
negative samples are effective for training of a classifier.
Ordinary tracking methods treat all training samples equally
and therefore suffer from a drift problem since the classifier
training procedure is likely to be dominated by the easily clas-
sified background examples. A solution to address this issue
is hard negative mining, which is widely used in two- stage
R-CNN-like object detectors [22]. This idea has been adopted
for online visual tracking in several works. CRT [12] assigned
discriminative weights for training samples to improve the
contribution of positive samples. MDNet [20] and CFNN [23]
integrated hard negative mining steps into minibatch selection
and selects a predefined number of hard negative samples
in each iteration of the learning procedure. Recently, a new
loss function named focal loss[24], [25] works as a more
effective alternative to previous approaches for dealing with
class imbalance. Intuitively, focal loss automatically down-
weight the contribution of easy examples during training and
rapidly focus the model on hard examples. In this sense, the
potential of focal loss should be further explored to handle the
foreground-background data imbalance in visual tracking.

III. OUR APPROACH

In this section, we give a detailed description of our
AdaCFNet. We first introduce the overall network architec-
ture of AdaCFNet and then descirbe the basic components
of AdaCFNet, namely the feature extraction sub-network,
the correlation filter layer and the focal logistic loss layer.
Squeeze-and-Excitation (SE) blocks are integrated into the
feature extraction sub-network for channel calibration. A focal
logistic loss is designed as a loss layer to replace the original
logistic loss in CFNet [9]. At last, details of online model
updating and scale estimation are described.

A. Network architecture

Our AdaCFNet follows the two-branch network architecture
of CFNet [9]. Each branch contains a feature extraction sub-
network with two convolutional layers. We couple a SE block

TABLE I: Architecture of the feature extraction sub-network.

Layer Support Chan.Map Stride Size.

input 255×255×3

conv1 11× 11 96×3 2 123×123× 96

SE1 global pooling 123×123 1×1× 96

SE1 FC 1 1×1 6×96 1 1×1× 6

SE1 FC 2 1×1 96×6 1 1×1× 96

pool1 3×3 2 61×61× 96

conv2 5× 5 32×48 1 57×57× 32

SE2 global pooling 57×57 1×1× 32

SE2 FC 1 1×1 2×32 1 1×1× 2

SE2 FC 2 1×1 32×2 1 1×1× 32

to each convolutional layer. As shown in Fig. 3, the overall
network architecture of AdaCFNet mainly consists of a feature
extraction sub-network, a correlation filter layer and a focal
logistic loss layer.

B. Feature extraction sub-network

The base network architecture (without SE blocks) for
feature extraction is similar to the convolutional stage of
AlexNet [26]. The dimensions of parameters and activations of
the feature extraction sub-network are given in Table I. Batch
normalization and rectified linear (ReLU) non-linearities are
used after each convolutional layer. Max-pooling is used after
the first convolutional layers. The feature stride of the final
representation is four.

To achieve adaptive channel weighting, we directly apply
the SE block to the feature extraction sub-network. The
activations produced after each ReLU layer are fed into a
SE block to perform feature calibration. These activations
are first passed through a global pooling layer to produce
a channel-wise descriptor. This descriptor embeds the global
distribution of channel-wise feature map, enabling informa-
tion from the global receptive filed of the network to be
leveraged by its lower layers. A simple gating mechanism (a
sigmoid activation) is employed to fully capture channel-wise
dependencies. Two fully connected (FC) layers around it limit
model complexity and aid generalization. The first FC layer is
used for dimensionality reduction with a reduction factor 16
while the second FC layer is used to increase dimensionality.
The activations of the SE block work as channel weights
adapted to the input feature. Consequently, the SE blocks
intrinsically introduce dynamics conditioned on the input,
helping to improve the feature discriminability.

The channel weight and its corresponding feature map are
visualized to illustrate the effectiveness of the SE blocks in
feature calibration. In Fig. 4, the feature maps in the first
row contain high energy and capture spatial details (e.g., edge,
contour) of the target object and its surrounding background.
Those feature maps are more discriminative and yield higher
channel weights through the SE blocks than those in the
second row. In challenging scenarios, the SE blocks emphasize
‘good’ feature maps and suppress ‘bad’ feature maps, hence
enhancing target representation and reducing tracking drift.
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Fig. 3: The overall network architecture of our approach. With CFNet [9] as the baseline network, our network integrates the
SE block into the feature extraction sub-network and focal logistic into the loss layer. Best viewed in color.
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Fig. 4: The visualization of feature maps and corresponding channel weights for a sample patch taken from the Basketball
sequence. The first and second rows show the features maps with the top 8 highest and lowest channel weights, respectively.

C. Correlation filter layer

The correlation filter layer computes a standard correlation
filter template from the feature map generated from the feature
extraction sub-network. Given a feature map x ∈ RM×N×C ,
the aim of the correlation filter layer is to learn a correlation
filter w ∈ RM×N×C . The feature channel l ∈ {1, · · · , d}
of x is denoted by xl. The desired response y includes a
label for each location in the feature map x. The desired
correlation filter w is obtained by minimizing the following

target function:

ε(w) =
1

2n

∥∥∥∥∥
C∑
l=1

xl ∗ wl − y

∥∥∥∥∥
2

+
λ

2

C∑
l=1

∥∥wl∥∥2 . (1)

Here, * denotes the convolution operator, n = MN is the
number of training samples and the regularization scalar λ
controls the impact of the regularization term.

Based on the circulant assumption, the solution to (1) is
derived as  k̂ = 1

n (x̂
∗ · x̂) + λ1

α̂ = 1
n k̂
−1 · ŷ

ŵ = α̂∗ · x̂
(2)
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Fig. 5: The score map (left) and ground-truth label (right).
Foreground samples and hard background samples are shown
in the red rectangle.

Here, x̂ represents the Fourier transform of x and x̂∗

represents the complex conjugation of x̂. The product and
division in (2) are point-wise operations.

According to the chain rule of back-propagation map in [9],
∇xl can be derived as

∇̂αl = x̂ · (∇̂wl)∗

∇̂yl = 1
n k̂
−∗ · ∇̂αl

∇̂kl = −k̂−∗ · α̂∗ · ∇̂αl
∇̂xl = α̂ · ∇̂wl + 2

n x̂ ·Re
{
∇̂kl

} (3)

Once the back-propagation of the focal logistic loss l with
respect to the feature map x is derived, the correlation filter
layer can be formulated as a differential layer in AdaCFNet
for end-to-end feature representation learning. The correlation
filter layer is followed by a cropping layer to obtain the
template for feature correlation.

D. Focal logistic layer

Before introducing our proposed focal logistic loss, we first
revisit the logistic loss defined in CFNet [9]. The logistic loss
in CFNet is formulated as

l(y, v) = log(1 + exp(−yv)) (4)

where v ∈ Rm×n is the real-valued score map of a single
exemplar-candidate pair and y ∈ {+1,−1} is its ground-truth
label. The logistic loss of the score map is defined as the mean
of the individual losses.

L(y, v) =
1

mn

∑
i∈[0,m],j∈[0,n]

l(y(i, j), v(i, j)) (5)

A notable problem of this logistic loss is that the training
procedure may be dominated by easily classified background
samples. Fig. 5 shows the score map and its corresponding
background-truth labels. There are only a limited number
of foreground samples and hard background samples but a
substantial amount of easy samples across the whole back-
ground of the score map. Therefore, when summed over the
large number of easy background samples, these small loss
values still overwhelm the total logistic loss and dominate the
gradient.

Motivated by the recently proposed focal loss [24], in
this subsection, we design a variant of the logistic loss,

named focal logistic loss. The proposed focal logistic loss is
formulated as

l(y, v) =
a

1 + exp(b · yv)
· log(1 + exp(−yv)). (6)

In (6), a
1+exp(b·yv) works as a modulating factor to the

logistic loss. The modulating factor adjusts the contribution
of each sample to the training loss according to input yv.

As shown in Fig. 6, the modulating factor assigns small
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Fig. 6: The modulating factor with respect to the input yv.

weight to the logistic loss if yv > 0. It is obvious that yv > 0
indicates that both y and v classify this sample to be positive
or negative samples. That is, this sample is an easy sample
and should be assigned small weight. On the other hand,
yv < 0 indicates that this sample is misclassified and should
be assigned large weight as a ‘hard’ sample.

Combining the focal loss and logistic loss, our focal logistic
loss can be easily implemented as a differential loss layer in
AdaCFNet to handle the foreground-background data imbal-
ance.

E. Online Tracking

During online tracking, it is computationally efficient to
extract lightweight convolutional features from the feature
extraction sub-network with GPU. The score map can be
efficiently computed with the fast CNN forward propagation
in AdaCFNet. The target location is estimated by finding the
maxima on the score map. Scale variation is estimated by
processing the search image at several scales with a fixed
aspect ratio. To achieve robust online tracking, the correlation
filter template derived in the exemplar branch is updated using
a rolling average with a fixed learning rate.

Different from the baseline CFNet which assigns a same
weight to different feature channels, our AdaCFNet adaptively
learns channel-wise weights from the SE block during online
tracking. The channel weights estimated by the SE block are
channel-aware and target-aware. Channel awareness means
that the SE block assigns different weights to different feature
channels while target awareness means that the SE block
assigns different weights to different targets in each feature
channel. Further, target awareness also works for the same
target in different frames of a given video. That is, the channel
weights change temporally during online tracking. As shown
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in Fig. 7, given different target objects, the SE block derives
different values in each feature channel and different statistic
characteristics among all channels.

Fig. 7: Three sample patches (first row) and the corresponding
channel weights (second row) estimated from the SE block
coupled to the first convolutional layers.
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one-pass evaluation on the OTB2013 dataset.

IV. EXPERIMENTS

We test our AdaCFNet on OTB100 [27], UAV123 [14] and
TC128 [15].
Evaluation Methodology: We follow the protocol in [7] to
conduct experiments on OTB100, TC128 and UAV123. The
evaluation is based on two metrics in one-pass evaluation:
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Fig. 10: Success plots of the trackers under comparison on
the OTB2013 (left) and OTB100 (right) benchmark datasets.

precision plot and success plot. The precision plot is computed
as the percentage of frames in the sequences where Euclidean
distance between the ground-truth and the estimated target
position is smaller than a certain threshold. The success plot
is plotted over the range of Intersection Over Union (IoU)
thresholds over all videos. We use the Distance Precision Rate
(DPR) at 20 pixels to rank trackers in the precision plot and
the Area Under Curve (AUC) to rank trackers in the success
plot.
Comparison Scenarios: An ablation study on OTB2013 [27]
is done to evaluate the contribution of the SE blocks and focal
logistic loss in AdaCFNet. On OTB100, TC128 and UAV123,
we compare AdaCFNet with existing trackers in the literature.
Implementation Details: Our AdaCFNet was implemented in
Matlab using Matconvnet [28] and trained on the ILSVRC
Imagenet Video dataset [10] using both the training and
validation sets. We use a reduction factor of 16 in the SE
block and set a = 2, b=1 in (6) for the focal logistic loss. The
network parameters of AdaCFNet are initialized with the im-
proved Xavier method [29] and optimized with straightforward
Stochastic Gradient Descent (SGD) using mini-batches of size
8 during offline training. Training is conducted for 50 epoches
as shown in Fig. 8. During online training, we search for the
target over three scales 1.0575{−1,0,1} and update the scale by
linear interolation with a factor of 0.52 to provide damping.
Comparative experiments were performed on a single NVIDIA
GeForce GTX Titan X and an Intel Core i7 CPU at 4.0GHz.

A. Experiments on OTB

OTB2013 [27] is a popular tracking dataset containing
50 fully annotated videos. OTB100 [7] is an extension
of OTB2013 and contains 100 sequences. Compared with
OTB2013, several more challenging sequences are included
in OTB100. In this section, we first conduct an ablation
experiment on OTB2013 and then a comparative experiment
on OTB100.

1) Ablation study: An ablation study on OTB2013 is
conducted to demonstrate the effectiveness of the SE block
and focal logistic loss. To verify the contribution of each
component individually, we introduce two variants of the base-
line tracker CFNet, namely CFNet+SE and CFNet+SE+Focal,
by progressively integrating our contributions. CFNet+SE is
implemented by integrating the SE blocks into the feature
extraction sub-network of CFNet while preserving the logistic
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Success plots of OPE - deformation (17)
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Success plots of OPE - fast motion (17)
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Success plots of OPE - in-plane rotation (31)
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Success plots of OPE - illumination variation (23)
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Success plots of OPE - low resolution (4)

SiamFC3s [0.657]
AdaCFNet [0.621]
RFL [0.516]
CFNet [0.489]
HCFT [0.442]
Staple [0.396]
LCT [0.386]
DSST [0.378]
CSRDCF [0.372]
KCF [0.274]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
u
c
c
e
s
s
 r

a
te

Success plots of OPE - motion blur (12)
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Success plots of OPE - occlusion (27)
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Success plots of OPE - out of view (6)

LCT [0.594]
HCFT [0.575]
CSRDCF [0.564]
RFL [0.557]
KCF [0.550]
SiamFC3s [0.543]
Staple [0.518]
AdaCFNet [0.512]
CFNet [0.490]
DSST [0.462]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

 r
at

e

Success plots of OPE - out-of-plane rotation (37)
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Success plots of OPE - scale variation (28)
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Fig. 11: Success ratio plots on 11 attributes of the OTB2013 dataset. All trackers under comparison are ranked by their AUC
scores.

TABLE II: Comparisons of the distance precision rate (DPR) at a threshold of 20 pixels, the overlap success rate (OSR) at an
overlap threshold of 0.5 and the average frame-rate on OTB2013.

Tracker AdaCFNet LCT Staple CSRDCF DSST KCF CFNet SiamFC3s HCFT RFL

DPR (%) 82.8 84.8 78.2 80.3 74.1 74.1 77.2 79.4 89.1 78.6

OSR (%) 77.1 81.3 73.8 73.8 67.0 62.2 74.3 73.7 74.0 74.3

FPS 66 5.5 60 13.0 22 243 75 86 11 15

loss. CFNet+SE+Focal is further implemented by replacing
the logistic loss in CFNet+SE with the focal logistic loss. As
shown in Fig. 9, integrating the SE block into the baseline
CFNet leads to an absolute performance improvement of 3.5%
in the precision plot and 3.0% in the success plot. The focal
logistic loss further improves the performance by 2.1% in the
precision plot and 1.5% in the success plot.

2) Overall performance: We further test our AdaCFNet on
OTB2013 and OTB100 with comparison to 9 trackers from
two typical categories: (1) correlation filter based trackers,
including Staple [30], CSRDCF [11], LCT [31], DSST [32]
and KCF [33]; (2) deep trackers, including SiamFC3s [8],
CFNet [9], RCF [34] and HCFT [17]. Among them, Staple
adopts additional color histogram for feature representation.
CSRDCF [11] is a spatially constrained correlation filter with
channel reliability. LCT [31] is a long-term tracker equipped
with a re-detection module. SiamFC3s [8] and CFNet [9] are
two CNN based deep trackers while RFL [34] is a LSTM

based tracker. HCFT [17] learns correlation filters with
hierarchical features extracted from different layers of a deep
neural network.

Following the protocol in [27], [7], the success plot of
different trackers are shown in Fig. 10. Overall, our tracker
ranks second on OTB2013 and first on OTB100. Additionally,
we report the distance precision rate (DPR) at 20 pixels, the
overlap success rate (OSR) at 0.5 and the average frame-rates
on OTB2013 in Table II. Our AdaCFNet achieves a DPR
of 89.1% and an OSR of 77.1% while running with a high
frame-rate of 66 fps. Compared to the baseline tracker CFNet,
our AdaCFNet achieves an absolute gain of 5.6% in DPR
and 2.8% in OSR respectively, with only a slight decrease in
frame-rate.

3) Attribute-based evaluation: We further analyze the per-
formance of AdaCFNet under different attributes on OTB2013.
All the videos in OTB2013 are annotated with 11 differ-
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Fig. 12: Tracking screenshots of AdaCFNet, CFNet and SiamFC3s on 11 challenging sequences from OTB100. Best viewed
in color.
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Fig. 13: Precision plot (left) and Success plot (right) using
one-pass evaluation on the UAV123 dataset.

ent attributes, namely, illumination variation, scale variation,
occlusion, deformation, motion blur, fast motion, in-plane
rotation, out-of-plane rotation, out-of-view, background clutter

and low resolution. Fig. 11 shows the comparative results
achieved by AdaCFNet and other tracking algorithms on these
11 attributes. These trackers are ranked by AUC of the success
plots. AdaCFNet achieves consistent superior performance
than the baseline tracker CFNet on all 11 attributes. This
demonstrates the effectiveness of the SE block and focal
logistic loss in boosting feature discriminability.

4) Qualitative comparison: We further visually compare
AdaCFNet with two state-of-the-art deep trackers without the
SE block and focal logistic loss, CFNet [9] and SiamFC3s [8].
Fig. 12 shows qualitative comparisons of AdaCFNet, CFNet
and SiamFC3s on 12 challenging sequences in OTB100.
In these sequences, the target undergoes poor illumination
(CarDark, Human8), partial occlusion (Subway, Box), similar
distracters (Liquor, Coupon), fast motion (MotorRolling, Ski-
ing), target deformation (Bolt), in-plane rotation (Rubik) and
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Success plots of OPE - Aspect Ratio Change (68)
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Success plots of OPE - Background Clutter (21)

CFNet [0.354]
MUSTER [0.352]
STRUCK [0.339]
AdaCFNet [0.334]
ASLA [0.323]
SRDCF [0.321]
DSST [0.314]
MEEM [0.307]
SAMF [0.282]
KCF [0.272]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
uc

ce
ss

 r
at

e

Success plots of OPE - Camera Motion (70)
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Success plots of OPE - Fast Motion (28)

CFNet [0.352]
SRDCF [0.340]
AdaCFNet [0.332]
MEEM [0.260]
MUSTER [0.251]
SAMF [0.250]
STRUCK [0.242]
ASLA [0.206]
DSST [0.186]
KCF [0.184]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

S
uc

ce
ss

 r
at

e

Success plots of OPE - Full Occlusion (33)
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Success plots of OPE - Illumination Variation (31)
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Success plots of OPE - Low Resolution (48)
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Success plots of OPE - Out-of-View (30)
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Success plots of OPE - Partial Occlusion (73)
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Success plots of OPE - Similar Object (39)
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Success plots of OPE - Scale Variation (109)
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Success plots of OPE - Viewpoint Change (60)
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Fig. 14: Success ratio plots on 12 attributes of the UAV123 dataset. All trackers in comparison are ranked by their AUC
scores.

background clutter (Board). It can be seen that our AdaCFNet
performs better than CFNet and SiamFC3s under challenging
scenarios. This can be attributed to the SE block and focal
logistic loss which improve the feature discriminability.

It is worth noting that, like most trackers, AdaCFNet is
prone to drifting in presence of long-term and/or full occlu-
sion. As shown in Fig. 12, AdaCFNet drifts to the background
in the Lemming sequence. We attribute this tracking failure
to the boundary effect which leads to a restricted target
search area. In future works, we tend to introduce spatial and
temporal attention [35], [36] into our framework to alleviate
this problem.

B. Experiments on UAV123

In this subsection, we evaluate our AdaCFNet on the
UAV123 dataset [14]. UAV123 is a recently introduced aerial
video benchmark for low altitude UAV target tracking. It con-
tains 123 aerial videos with more than 110K frames. Different
from OTB2013, UAV123 contains both realistic and simulated
sequences from an aerial viewpoint. These sequences contain
common visual tracking challenges including long-term full
and partial occlusion, scale variation, illumination variation,
viewpoint change, background clutter and camera motion.

Fig. 13 shows the comparative results achieved by
AdaCFNet, CFNet and 8 state-of-the-art trackers included in
[14]. Our AdaCFNet achieves the best performance in both
the precision plot (65.34%) and success plot (47.11%) while

running at an average frame-rate of 58fps.
As shown in Fig. 14, we perform an attribute based analysis

of AdaCFNet on the UAV123 dataset. All the videos in
UAV123 are annotated with 12 different attributes, namely:
aspect ratio change, background clutter, camera motion, fast
motion, full occlusion, illumination variation, low resolution,
out-of-view, partial occlusion, similar object, scale variation,
and viewpoint change. Our AdaCFNet achieves the best
performance on 8 out of 12 attributes. Despite no explicit
deformation or occlusion handling component, our tracker
performs favorably in cases with aspect ratio change and
occlusion, as shown in Fig. 14.

C. Experiments on TC128

The TC128 dataset [15] contains 128 color sequences and is
specifically designed to evaluate the tracking performance in
color sequences. As shown in Fig. 15, our AdaCFNet achieves
the best performance among all trackers under comparison.
CFNet achieves a precision rate of 63.11% and a success rate
of 47.09%. On contrast, our AdaCFNet achieves 65.34% in
the precision plot and 47.11% in the success plot. We attribute
the favorable performance of AdaCFNet to the large training
dataset, namely the VID [10] dataset which contains more
than 4000 color videos. Therefore, the learned convolutional
features are more effective than the HOG (DSST [32]) and
Haar-like features (FCT [37]) in encoding color information.
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Fig. 15: Precision plots (left) and success plots (right)
achieved by different trackers on the TC128 benchmark
dataset.

V. CONCLUSION

We propose a generic end-to-end framework for CNN
based trackers to tackle feature calibration and foreground-
background data imbalance. This framework significantly in-
creases the feature discriminability at low computational cost
and can be combined with any CNN based tracker with minor
modification. A lightweight squeeze-and-excitation block is
coupled to each convolutional layer to generate channel-wise
weight for each feature channel. Focal loss is introduced
into the loss layer to tackle the foreground-background data
imbalance in network training. Extensive experiments show
that our approach improves the tracking performance while
running at a real-time frame-rate. Our future work will fo-
cus on substituting the feature extraction sub-network with
lightweight architectures (e.g. SqueezeNet [38] and ShuffleNet
[39]) for higher frame-rates and introducing spatial/temporal
attention to achieve higher accuracy.
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